(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
c(c(c(b(x)))) → a(1, b(c(x)))
b(c(b(c(x)))) → a(0, a(1, x))
a(0, x) → c(c(x))
a(1, x) → c(b(x))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted CpxTRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
c(c(c(b(z0)))) → a(1, b(c(z0)))
b(c(b(c(z0)))) → a(0, a(1, z0))
a(0, z0) → c(c(z0))
a(1, z0) → c(b(z0))
Tuples:
C(c(c(b(z0)))) → c1(A(1, b(c(z0))), B(c(z0)), C(z0))
B(c(b(c(z0)))) → c2(A(0, a(1, z0)), A(1, z0))
A(0, z0) → c3(C(c(z0)), C(z0))
A(1, z0) → c4(C(b(z0)), B(z0))
S tuples:
C(c(c(b(z0)))) → c1(A(1, b(c(z0))), B(c(z0)), C(z0))
B(c(b(c(z0)))) → c2(A(0, a(1, z0)), A(1, z0))
A(0, z0) → c3(C(c(z0)), C(z0))
A(1, z0) → c4(C(b(z0)), B(z0))
K tuples:none
Defined Rule Symbols:
c, b, a
Defined Pair Symbols:
C, B, A
Compound Symbols:
c1, c2, c3, c4
(3) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
B(
c(
b(
c(
z0)))) →
c2(
A(
0,
a(
1,
z0)),
A(
1,
z0)) by
B(c(b(c(z0)))) → c2(A(0, c(b(z0))), A(1, z0))
B(c(b(c(x0)))) → c2
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
c(c(c(b(z0)))) → a(1, b(c(z0)))
b(c(b(c(z0)))) → a(0, a(1, z0))
a(0, z0) → c(c(z0))
a(1, z0) → c(b(z0))
Tuples:
C(c(c(b(z0)))) → c1(A(1, b(c(z0))), B(c(z0)), C(z0))
A(0, z0) → c3(C(c(z0)), C(z0))
A(1, z0) → c4(C(b(z0)), B(z0))
B(c(b(c(z0)))) → c2(A(0, c(b(z0))), A(1, z0))
B(c(b(c(x0)))) → c2
S tuples:
C(c(c(b(z0)))) → c1(A(1, b(c(z0))), B(c(z0)), C(z0))
A(0, z0) → c3(C(c(z0)), C(z0))
A(1, z0) → c4(C(b(z0)), B(z0))
B(c(b(c(z0)))) → c2(A(0, c(b(z0))), A(1, z0))
B(c(b(c(x0)))) → c2
K tuples:none
Defined Rule Symbols:
c, b, a
Defined Pair Symbols:
C, A, B
Compound Symbols:
c1, c3, c4, c2, c2
(5) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
B(c(b(c(x0)))) → c2
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
c(c(c(b(z0)))) → a(1, b(c(z0)))
b(c(b(c(z0)))) → a(0, a(1, z0))
a(0, z0) → c(c(z0))
a(1, z0) → c(b(z0))
Tuples:
C(c(c(b(z0)))) → c1(A(1, b(c(z0))), B(c(z0)), C(z0))
A(0, z0) → c3(C(c(z0)), C(z0))
A(1, z0) → c4(C(b(z0)), B(z0))
B(c(b(c(z0)))) → c2(A(0, c(b(z0))), A(1, z0))
S tuples:
C(c(c(b(z0)))) → c1(A(1, b(c(z0))), B(c(z0)), C(z0))
A(0, z0) → c3(C(c(z0)), C(z0))
A(1, z0) → c4(C(b(z0)), B(z0))
B(c(b(c(z0)))) → c2(A(0, c(b(z0))), A(1, z0))
K tuples:none
Defined Rule Symbols:
c, b, a
Defined Pair Symbols:
C, A, B
Compound Symbols:
c1, c3, c4, c2
(7) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
A(
1,
z0) →
c4(
C(
b(
z0)),
B(
z0)) by
A(1, c(b(c(z0)))) → c4(C(a(0, a(1, z0))), B(c(b(c(z0)))))
A(1, x0) → c4
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
c(c(c(b(z0)))) → a(1, b(c(z0)))
b(c(b(c(z0)))) → a(0, a(1, z0))
a(0, z0) → c(c(z0))
a(1, z0) → c(b(z0))
Tuples:
C(c(c(b(z0)))) → c1(A(1, b(c(z0))), B(c(z0)), C(z0))
A(0, z0) → c3(C(c(z0)), C(z0))
B(c(b(c(z0)))) → c2(A(0, c(b(z0))), A(1, z0))
A(1, c(b(c(z0)))) → c4(C(a(0, a(1, z0))), B(c(b(c(z0)))))
A(1, x0) → c4
S tuples:
C(c(c(b(z0)))) → c1(A(1, b(c(z0))), B(c(z0)), C(z0))
A(0, z0) → c3(C(c(z0)), C(z0))
B(c(b(c(z0)))) → c2(A(0, c(b(z0))), A(1, z0))
A(1, c(b(c(z0)))) → c4(C(a(0, a(1, z0))), B(c(b(c(z0)))))
A(1, x0) → c4
K tuples:none
Defined Rule Symbols:
c, b, a
Defined Pair Symbols:
C, A, B
Compound Symbols:
c1, c3, c2, c4, c4
(9) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
A(1, x0) → c4
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
c(c(c(b(z0)))) → a(1, b(c(z0)))
b(c(b(c(z0)))) → a(0, a(1, z0))
a(0, z0) → c(c(z0))
a(1, z0) → c(b(z0))
Tuples:
C(c(c(b(z0)))) → c1(A(1, b(c(z0))), B(c(z0)), C(z0))
A(0, z0) → c3(C(c(z0)), C(z0))
B(c(b(c(z0)))) → c2(A(0, c(b(z0))), A(1, z0))
A(1, c(b(c(z0)))) → c4(C(a(0, a(1, z0))), B(c(b(c(z0)))))
S tuples:
C(c(c(b(z0)))) → c1(A(1, b(c(z0))), B(c(z0)), C(z0))
A(0, z0) → c3(C(c(z0)), C(z0))
B(c(b(c(z0)))) → c2(A(0, c(b(z0))), A(1, z0))
A(1, c(b(c(z0)))) → c4(C(a(0, a(1, z0))), B(c(b(c(z0)))))
K tuples:none
Defined Rule Symbols:
c, b, a
Defined Pair Symbols:
C, A, B
Compound Symbols:
c1, c3, c2, c4
(11) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
C(
c(
c(
b(
z0)))) →
c1(
A(
1,
b(
c(
z0))),
B(
c(
z0)),
C(
z0)) by
C(c(c(b(b(c(z0)))))) → c1(A(1, a(0, a(1, z0))), B(c(b(c(z0)))), C(b(c(z0))))
C(c(c(b(c(c(b(z0))))))) → c1(A(1, b(a(1, b(c(z0))))), B(c(c(c(b(z0))))), C(c(c(b(z0)))))
C(c(c(b(x0)))) → c1
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
c(c(c(b(z0)))) → a(1, b(c(z0)))
b(c(b(c(z0)))) → a(0, a(1, z0))
a(0, z0) → c(c(z0))
a(1, z0) → c(b(z0))
Tuples:
A(0, z0) → c3(C(c(z0)), C(z0))
B(c(b(c(z0)))) → c2(A(0, c(b(z0))), A(1, z0))
A(1, c(b(c(z0)))) → c4(C(a(0, a(1, z0))), B(c(b(c(z0)))))
C(c(c(b(b(c(z0)))))) → c1(A(1, a(0, a(1, z0))), B(c(b(c(z0)))), C(b(c(z0))))
C(c(c(b(c(c(b(z0))))))) → c1(A(1, b(a(1, b(c(z0))))), B(c(c(c(b(z0))))), C(c(c(b(z0)))))
C(c(c(b(x0)))) → c1
S tuples:
A(0, z0) → c3(C(c(z0)), C(z0))
B(c(b(c(z0)))) → c2(A(0, c(b(z0))), A(1, z0))
A(1, c(b(c(z0)))) → c4(C(a(0, a(1, z0))), B(c(b(c(z0)))))
C(c(c(b(b(c(z0)))))) → c1(A(1, a(0, a(1, z0))), B(c(b(c(z0)))), C(b(c(z0))))
C(c(c(b(c(c(b(z0))))))) → c1(A(1, b(a(1, b(c(z0))))), B(c(c(c(b(z0))))), C(c(c(b(z0)))))
C(c(c(b(x0)))) → c1
K tuples:none
Defined Rule Symbols:
c, b, a
Defined Pair Symbols:
A, B, C
Compound Symbols:
c3, c2, c4, c1, c1
(13) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
C(c(c(b(x0)))) → c1
(14) Obligation:
Complexity Dependency Tuples Problem
Rules:
c(c(c(b(z0)))) → a(1, b(c(z0)))
b(c(b(c(z0)))) → a(0, a(1, z0))
a(0, z0) → c(c(z0))
a(1, z0) → c(b(z0))
Tuples:
A(0, z0) → c3(C(c(z0)), C(z0))
B(c(b(c(z0)))) → c2(A(0, c(b(z0))), A(1, z0))
A(1, c(b(c(z0)))) → c4(C(a(0, a(1, z0))), B(c(b(c(z0)))))
C(c(c(b(b(c(z0)))))) → c1(A(1, a(0, a(1, z0))), B(c(b(c(z0)))), C(b(c(z0))))
C(c(c(b(c(c(b(z0))))))) → c1(A(1, b(a(1, b(c(z0))))), B(c(c(c(b(z0))))), C(c(c(b(z0)))))
S tuples:
A(0, z0) → c3(C(c(z0)), C(z0))
B(c(b(c(z0)))) → c2(A(0, c(b(z0))), A(1, z0))
A(1, c(b(c(z0)))) → c4(C(a(0, a(1, z0))), B(c(b(c(z0)))))
C(c(c(b(b(c(z0)))))) → c1(A(1, a(0, a(1, z0))), B(c(b(c(z0)))), C(b(c(z0))))
C(c(c(b(c(c(b(z0))))))) → c1(A(1, b(a(1, b(c(z0))))), B(c(c(c(b(z0))))), C(c(c(b(z0)))))
K tuples:none
Defined Rule Symbols:
c, b, a
Defined Pair Symbols:
A, B, C
Compound Symbols:
c3, c2, c4, c1
(15) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
A(
1,
c(
b(
c(
z0)))) →
c4(
C(
a(
0,
a(
1,
z0))),
B(
c(
b(
c(
z0))))) by
A(1, c(b(c(x0)))) → c4(C(c(c(a(1, x0)))), B(c(b(c(x0)))))
A(1, c(b(c(z0)))) → c4(C(a(0, c(b(z0)))), B(c(b(c(z0)))))
A(1, c(b(c(x0)))) → c4
(16) Obligation:
Complexity Dependency Tuples Problem
Rules:
c(c(c(b(z0)))) → a(1, b(c(z0)))
b(c(b(c(z0)))) → a(0, a(1, z0))
a(0, z0) → c(c(z0))
a(1, z0) → c(b(z0))
Tuples:
A(0, z0) → c3(C(c(z0)), C(z0))
B(c(b(c(z0)))) → c2(A(0, c(b(z0))), A(1, z0))
C(c(c(b(b(c(z0)))))) → c1(A(1, a(0, a(1, z0))), B(c(b(c(z0)))), C(b(c(z0))))
C(c(c(b(c(c(b(z0))))))) → c1(A(1, b(a(1, b(c(z0))))), B(c(c(c(b(z0))))), C(c(c(b(z0)))))
A(1, c(b(c(x0)))) → c4(C(c(c(a(1, x0)))), B(c(b(c(x0)))))
A(1, c(b(c(z0)))) → c4(C(a(0, c(b(z0)))), B(c(b(c(z0)))))
A(1, c(b(c(x0)))) → c4
S tuples:
A(0, z0) → c3(C(c(z0)), C(z0))
B(c(b(c(z0)))) → c2(A(0, c(b(z0))), A(1, z0))
C(c(c(b(b(c(z0)))))) → c1(A(1, a(0, a(1, z0))), B(c(b(c(z0)))), C(b(c(z0))))
C(c(c(b(c(c(b(z0))))))) → c1(A(1, b(a(1, b(c(z0))))), B(c(c(c(b(z0))))), C(c(c(b(z0)))))
A(1, c(b(c(x0)))) → c4(C(c(c(a(1, x0)))), B(c(b(c(x0)))))
A(1, c(b(c(z0)))) → c4(C(a(0, c(b(z0)))), B(c(b(c(z0)))))
A(1, c(b(c(x0)))) → c4
K tuples:none
Defined Rule Symbols:
c, b, a
Defined Pair Symbols:
A, B, C
Compound Symbols:
c3, c2, c1, c4, c4
(17) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
A(1, c(b(c(x0)))) → c4
(18) Obligation:
Complexity Dependency Tuples Problem
Rules:
c(c(c(b(z0)))) → a(1, b(c(z0)))
b(c(b(c(z0)))) → a(0, a(1, z0))
a(0, z0) → c(c(z0))
a(1, z0) → c(b(z0))
Tuples:
A(0, z0) → c3(C(c(z0)), C(z0))
B(c(b(c(z0)))) → c2(A(0, c(b(z0))), A(1, z0))
C(c(c(b(b(c(z0)))))) → c1(A(1, a(0, a(1, z0))), B(c(b(c(z0)))), C(b(c(z0))))
C(c(c(b(c(c(b(z0))))))) → c1(A(1, b(a(1, b(c(z0))))), B(c(c(c(b(z0))))), C(c(c(b(z0)))))
A(1, c(b(c(x0)))) → c4(C(c(c(a(1, x0)))), B(c(b(c(x0)))))
A(1, c(b(c(z0)))) → c4(C(a(0, c(b(z0)))), B(c(b(c(z0)))))
S tuples:
A(0, z0) → c3(C(c(z0)), C(z0))
B(c(b(c(z0)))) → c2(A(0, c(b(z0))), A(1, z0))
C(c(c(b(b(c(z0)))))) → c1(A(1, a(0, a(1, z0))), B(c(b(c(z0)))), C(b(c(z0))))
C(c(c(b(c(c(b(z0))))))) → c1(A(1, b(a(1, b(c(z0))))), B(c(c(c(b(z0))))), C(c(c(b(z0)))))
A(1, c(b(c(x0)))) → c4(C(c(c(a(1, x0)))), B(c(b(c(x0)))))
A(1, c(b(c(z0)))) → c4(C(a(0, c(b(z0)))), B(c(b(c(z0)))))
K tuples:none
Defined Rule Symbols:
c, b, a
Defined Pair Symbols:
A, B, C
Compound Symbols:
c3, c2, c1, c4
(19) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
C(
c(
c(
b(
b(
c(
z0)))))) →
c1(
A(
1,
a(
0,
a(
1,
z0))),
B(
c(
b(
c(
z0)))),
C(
b(
c(
z0)))) by
C(c(c(b(b(c(x0)))))) → c1(A(1, c(c(a(1, x0)))), B(c(b(c(x0)))), C(b(c(x0))))
C(c(c(b(b(c(z0)))))) → c1(A(1, a(0, c(b(z0)))), B(c(b(c(z0)))), C(b(c(z0))))
C(c(c(b(b(c(x0)))))) → c1
(20) Obligation:
Complexity Dependency Tuples Problem
Rules:
c(c(c(b(z0)))) → a(1, b(c(z0)))
b(c(b(c(z0)))) → a(0, a(1, z0))
a(0, z0) → c(c(z0))
a(1, z0) → c(b(z0))
Tuples:
A(0, z0) → c3(C(c(z0)), C(z0))
B(c(b(c(z0)))) → c2(A(0, c(b(z0))), A(1, z0))
C(c(c(b(c(c(b(z0))))))) → c1(A(1, b(a(1, b(c(z0))))), B(c(c(c(b(z0))))), C(c(c(b(z0)))))
A(1, c(b(c(x0)))) → c4(C(c(c(a(1, x0)))), B(c(b(c(x0)))))
A(1, c(b(c(z0)))) → c4(C(a(0, c(b(z0)))), B(c(b(c(z0)))))
C(c(c(b(b(c(x0)))))) → c1(A(1, c(c(a(1, x0)))), B(c(b(c(x0)))), C(b(c(x0))))
C(c(c(b(b(c(z0)))))) → c1(A(1, a(0, c(b(z0)))), B(c(b(c(z0)))), C(b(c(z0))))
C(c(c(b(b(c(x0)))))) → c1
S tuples:
A(0, z0) → c3(C(c(z0)), C(z0))
B(c(b(c(z0)))) → c2(A(0, c(b(z0))), A(1, z0))
C(c(c(b(c(c(b(z0))))))) → c1(A(1, b(a(1, b(c(z0))))), B(c(c(c(b(z0))))), C(c(c(b(z0)))))
A(1, c(b(c(x0)))) → c4(C(c(c(a(1, x0)))), B(c(b(c(x0)))))
A(1, c(b(c(z0)))) → c4(C(a(0, c(b(z0)))), B(c(b(c(z0)))))
C(c(c(b(b(c(x0)))))) → c1(A(1, c(c(a(1, x0)))), B(c(b(c(x0)))), C(b(c(x0))))
C(c(c(b(b(c(z0)))))) → c1(A(1, a(0, c(b(z0)))), B(c(b(c(z0)))), C(b(c(z0))))
C(c(c(b(b(c(x0)))))) → c1
K tuples:none
Defined Rule Symbols:
c, b, a
Defined Pair Symbols:
A, B, C
Compound Symbols:
c3, c2, c1, c4, c1
(21) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 1 trailing nodes:
C(c(c(b(b(c(x0)))))) → c1
(22) Obligation:
Complexity Dependency Tuples Problem
Rules:
c(c(c(b(z0)))) → a(1, b(c(z0)))
b(c(b(c(z0)))) → a(0, a(1, z0))
a(0, z0) → c(c(z0))
a(1, z0) → c(b(z0))
Tuples:
A(0, z0) → c3(C(c(z0)), C(z0))
B(c(b(c(z0)))) → c2(A(0, c(b(z0))), A(1, z0))
C(c(c(b(c(c(b(z0))))))) → c1(A(1, b(a(1, b(c(z0))))), B(c(c(c(b(z0))))), C(c(c(b(z0)))))
A(1, c(b(c(x0)))) → c4(C(c(c(a(1, x0)))), B(c(b(c(x0)))))
A(1, c(b(c(z0)))) → c4(C(a(0, c(b(z0)))), B(c(b(c(z0)))))
C(c(c(b(b(c(x0)))))) → c1(A(1, c(c(a(1, x0)))), B(c(b(c(x0)))), C(b(c(x0))))
C(c(c(b(b(c(z0)))))) → c1(A(1, a(0, c(b(z0)))), B(c(b(c(z0)))), C(b(c(z0))))
S tuples:
A(0, z0) → c3(C(c(z0)), C(z0))
B(c(b(c(z0)))) → c2(A(0, c(b(z0))), A(1, z0))
C(c(c(b(c(c(b(z0))))))) → c1(A(1, b(a(1, b(c(z0))))), B(c(c(c(b(z0))))), C(c(c(b(z0)))))
A(1, c(b(c(x0)))) → c4(C(c(c(a(1, x0)))), B(c(b(c(x0)))))
A(1, c(b(c(z0)))) → c4(C(a(0, c(b(z0)))), B(c(b(c(z0)))))
C(c(c(b(b(c(x0)))))) → c1(A(1, c(c(a(1, x0)))), B(c(b(c(x0)))), C(b(c(x0))))
C(c(c(b(b(c(z0)))))) → c1(A(1, a(0, c(b(z0)))), B(c(b(c(z0)))), C(b(c(z0))))
K tuples:none
Defined Rule Symbols:
c, b, a
Defined Pair Symbols:
A, B, C
Compound Symbols:
c3, c2, c1, c4
(23) CdtNarrowingProof (BOTH BOUNDS(ID, ID) transformation)
Use narrowing to replace
C(
c(
c(
b(
c(
c(
b(
z0))))))) →
c1(
A(
1,
b(
a(
1,
b(
c(
z0))))),
B(
c(
c(
c(
b(
z0))))),
C(
c(
c(
b(
z0))))) by
C(c(c(b(c(c(b(x0))))))) → c1(A(1, b(c(b(b(c(x0)))))), B(c(c(c(b(x0))))), C(c(c(b(x0)))))
C(c(c(b(c(c(b(b(c(z0))))))))) → c1(A(1, b(a(1, a(0, a(1, z0))))), B(c(c(c(b(b(c(z0))))))), C(c(c(b(b(c(z0)))))))
C(c(c(b(c(c(b(c(c(b(z0)))))))))) → c1(A(1, b(a(1, b(a(1, b(c(z0))))))), B(c(c(c(b(c(c(b(z0)))))))), C(c(c(b(c(c(b(z0))))))))
C(c(c(b(c(c(b(x0))))))) → c1(B(c(c(c(b(x0))))))
(24) Obligation:
Complexity Dependency Tuples Problem
Rules:
c(c(c(b(z0)))) → a(1, b(c(z0)))
b(c(b(c(z0)))) → a(0, a(1, z0))
a(0, z0) → c(c(z0))
a(1, z0) → c(b(z0))
Tuples:
A(0, z0) → c3(C(c(z0)), C(z0))
B(c(b(c(z0)))) → c2(A(0, c(b(z0))), A(1, z0))
A(1, c(b(c(x0)))) → c4(C(c(c(a(1, x0)))), B(c(b(c(x0)))))
A(1, c(b(c(z0)))) → c4(C(a(0, c(b(z0)))), B(c(b(c(z0)))))
C(c(c(b(b(c(x0)))))) → c1(A(1, c(c(a(1, x0)))), B(c(b(c(x0)))), C(b(c(x0))))
C(c(c(b(b(c(z0)))))) → c1(A(1, a(0, c(b(z0)))), B(c(b(c(z0)))), C(b(c(z0))))
C(c(c(b(c(c(b(x0))))))) → c1(A(1, b(c(b(b(c(x0)))))), B(c(c(c(b(x0))))), C(c(c(b(x0)))))
C(c(c(b(c(c(b(b(c(z0))))))))) → c1(A(1, b(a(1, a(0, a(1, z0))))), B(c(c(c(b(b(c(z0))))))), C(c(c(b(b(c(z0)))))))
C(c(c(b(c(c(b(c(c(b(z0)))))))))) → c1(A(1, b(a(1, b(a(1, b(c(z0))))))), B(c(c(c(b(c(c(b(z0)))))))), C(c(c(b(c(c(b(z0))))))))
C(c(c(b(c(c(b(x0))))))) → c1(B(c(c(c(b(x0))))))
S tuples:
A(0, z0) → c3(C(c(z0)), C(z0))
B(c(b(c(z0)))) → c2(A(0, c(b(z0))), A(1, z0))
A(1, c(b(c(x0)))) → c4(C(c(c(a(1, x0)))), B(c(b(c(x0)))))
A(1, c(b(c(z0)))) → c4(C(a(0, c(b(z0)))), B(c(b(c(z0)))))
C(c(c(b(b(c(x0)))))) → c1(A(1, c(c(a(1, x0)))), B(c(b(c(x0)))), C(b(c(x0))))
C(c(c(b(b(c(z0)))))) → c1(A(1, a(0, c(b(z0)))), B(c(b(c(z0)))), C(b(c(z0))))
C(c(c(b(c(c(b(x0))))))) → c1(A(1, b(c(b(b(c(x0)))))), B(c(c(c(b(x0))))), C(c(c(b(x0)))))
C(c(c(b(c(c(b(b(c(z0))))))))) → c1(A(1, b(a(1, a(0, a(1, z0))))), B(c(c(c(b(b(c(z0))))))), C(c(c(b(b(c(z0)))))))
C(c(c(b(c(c(b(c(c(b(z0)))))))))) → c1(A(1, b(a(1, b(a(1, b(c(z0))))))), B(c(c(c(b(c(c(b(z0)))))))), C(c(c(b(c(c(b(z0))))))))
C(c(c(b(c(c(b(x0))))))) → c1(B(c(c(c(b(x0))))))
K tuples:none
Defined Rule Symbols:
c, b, a
Defined Pair Symbols:
A, B, C
Compound Symbols:
c3, c2, c4, c1, c1
(25) CpxTrsMatchBoundsTAProof (EQUIVALENT transformation)
A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 1.
The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by:
final states : [1, 2, 3]
transitions:
10() → 0
00() → 0
c0(0) → 1
b0(0) → 2
a0(0, 0) → 3
c1(0) → 4
c1(4) → 3
b1(0) → 5
c1(5) → 3
(26) BOUNDS(O(1), O(n^1))